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A Class of Even and Odd Nonlinear Coherent States
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A class of even and odd nonlinear coherent states are introduced. The properties of
some related states, including quadrature squeezing, antibunching effect, and phase
probability distribution, are studied.
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1. INTRODUCTION

Coherent states (CSs) are important in many fields of physics (Klauder and
Skagerstam, 1985; Zhang et al., 1990). CSs |α〉, defined as the eigenstates of the
harmonic oscillator annihilation operator â, â|α〉 = α|α〉 (Glauber, 1963), have
properties like the classical radiation field. There exist states of the electromagnetic
field whose properties, like squeezing, higher-order squeezing, antibunching, and
sub-Poissonian statistics (Loudon and Knight, 1987; Walls, 1983), are strictly
quantum mechanical in nature. These states are called nonclassical states. The CSs
define the limit between the classical and nonclassical behavior of the radiation
field as far as the nonclassical effects are considered.

Recently there has been much interest in the study of nonlinear coherent states
(NLCSs) called f -CSs (de Matos Filho and Vogel, 1996; Man’ko et al., 1997),
which are eigenstates of the annihilation operator f (n̂)â of f -oscillators, where
f (n̂) is an operator-valued function of the boson number operator n̂ = â+â. A
class of f -CSs can be realized physically as the stationary states of the centre-
of-mass motion of a trapped ion (de Matos Filho and Vogel, 1996). The NLCSs
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exhibit nonclassical features such as squeezing and self-splitting. Subsequently, a
new kind of NLCSs was constructed by Roy and Roy (2000). They are defined as
the eigenstates |β, f 〉 of the operator B̂ = 1

f (n̂) â. In the number state basis, |β, f 〉
is given by (Choquette et al., 2003; Roy and Roy, 2000)

|β, f 〉 = N f

∞∑
n=0

βn f (n)!√
n!

|n〉, N f =
{ ∞∑

n=0

|β|2n[ f (n)!]2

n!

}−1/2

, (1)

where β is an arbitrary complex number. f (n)! = f (n) f (n − 1) · · · f (1) f (0) and
f (0) = 1.

The eigenstates of the operator â2 show some of the nonclassical features.
These eigenstates can be written as a combination of the CSs |α〉 and |−α〉
(Dodonov et al., 1974). The symmetric combination is the even coherent state
(ECS), |α〉+, and its number state expansion is

|α〉+ = (cosh |α|2)−1/2
∞∑

n=0

α2n

√
(2n)!

|2n〉. (2)

The antisymmetric combination is the odd coherent state (OCS), |α〉−, given by

|α〉− = (sinh |α|2)−1/2
∞∑

n=0

α2n+1

√
(2n + 1)!

|2n + 1〉. (3)

The ECS has a squeezing but no antibunching effect. The OCS has an antibunching
effect but no squeezing effect (Hillery, 1987; Xia and Guo, 1989). The notion of
even and odd CSs has been generalized to the case of NLCSs as the superposition
of the f -CSs |α, f 〉 and |−α, f 〉 (Mancini, 1997). These states are the eigenstates
of the operator Â2 where Â is the generalized annihilation operator f (n̂)â. In the
present paper we introduce a different class of even and odd NLCSs. The some of
their properties, including quadrature squeezing, antibunching effect, and phase
probability distribution, are studied. Because of these effects they have the typical
nonclassical properties. It is shown that the nonclassical properties of the class of
even and odd NLCSs are very different from those of the usual even and odd CSs.

2. DEFINITION OF EVEN AND ODD NLCSs

According to the definition of the even and odd NLCSs (Mancini, 1997;
Sivakumar, 1998), a class of new even and odd NLCSs are defined as eigenstates
of the operator 1

F(n̂) â
2, where F(n̂) is an operator-valued function of the number

operator n̂. We denote the eigenstates as |β, F〉 and they satisfy

1

F(n̂)
â2|β, F〉 = β|β, F〉. (4)
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In the Fock states |n〉 of the harmonic oscillator, |β, F〉, is given by

|β, F〉 =
∞∑

n=0

bn|n〉. (5)

Substituting (5) into (4), we have

bn+2 = βF(n)bn√
(n + 1)(n + 2)

, (6)

where the function F(n) is obtained by replacing the number operator n̂ in F(n̂)
by the integer n. This recurrence relation among the expansion coefficients gives

b2n = βn F(2(n − 1))!!√
(2n)!

b0, b2n+1 = βn F(2n − 1)!!√
(2n + 1)!

b1, (7)

where

F(2(n − 1))!! = F(0)F(2)F(4) · · · F(2(n − 1)), F(0) = 1, (8a)

F(2n − 1)!! = F(1)F(3)F(5) · · · F(2n − 1). (8b)

The constants b0 and b1 are fixed by normalization of the states |β, F〉. If we
choose b1 = 0, the state |β, F〉 involves the superposition of even number (Fock)
states and represents the even NLCS. If b0 = 0, the state |β, F〉, the superposition
of odd number states, is the odd NLCS. We denote the even NLCS as |β, F〉+ and
the odd NLCS as |β, F〉−. The even NLCS given by

|β, F〉+ = b0

∞∑
n=0

βn F(2(n − 1))!!√
(2n)!

|2n〉, |b0|−2 =
∞∑

n=0

|β|2n[F(2(n − 1))!!]2

(2n)!
.

(9)

Similarly, the odd NLCS given by

|β, F〉− = b1

∞∑
n=0

βn F(2n − 1)!!√
(2n + 1)!

|2n + 1〉, |b1|−2 =
∞∑

n=0

|β|2n[F(2n − 1)!!]2

(2n + 1)!
.

(10)

Clearly, in the linear limit, F(n̂) = 1, the even NLCS become the usual ECS and
the odd NLCS become the usual OCS, respectively. Depending on the form of
F(n̂), this kind of the even and odd NLCSs may exhibit many of the nonclassical
features.

If we take the operator function F(n̂) to be 1/(1 + kn̂) (Sivakumar, 1998) (we
choose this kind of nonlinearity function in the following numerical calculation),
where 0 ≤ k ≤ 1, the even NLCS is

|β, F〉+ = b+1

∞∑
n=0

βn

(1 + k(2n − 2))!!
√

(2n)!
|2n〉, (11)
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b+1|−2 =
∞∑

n=0

|β|2n

[(1 + k(2n − 2))!!]2(2n)!
, (12)

and the odd NLCS is

|β, F〉− = b−1

∞∑
n=0

βn

(1 + k(2n − 1))!!
√

(2n + 1)!
|2n + 1〉, (13)

|b−1|−2 =
∞∑

n=0

|β|2n

[(1 + k(2n − 1))!!]2(2n + 1)!
. (14)

3. QUADRATUE SQUEEZING OF EVEN AND ODD NLCSs

We consider the usual squeezing in terms of the quadrature operator X1 and
X2 defined as

X1 = (â+ + â)/2, X2 = i(â+ − â)/2, (15)

such that [X1, X2] = i/2, which implies the uncertainty relation

〈(�X1)2〉〈(�X2)2〉 ≥ 1

16
. (16)

Then the squeezing of the two operators may be conveniently described by the
following two parameters

D(i) = 4〈(�Xi )
2〉 − 1, (i = 1, 2). (17)

The quantities given in Eq. (17) are also described in terms of the operators â and
â+ as follows:

D(1) = 2〈â+â〉 + 〈â+2 + â2〉 − 〈â+ + â〉2, (18a)

D(2) = 2〈â+â〉 − 〈â+2 + â2〉 + 〈â+ + â〉2, (18b)

where −1 ≤ D(i) < 0 for the usual squeezing of the field in the direction Xi (i = 1
or 2), and the maximum squeezing (100%) is obtained when D(i) = −1 (i = 1
or 2).

Now, we study the characteristics of the squeezing in the even and odd NLCSs
[i.e., the states described by Eqs. (11) and (13)].

Using Eqs. (11) and (13), for the even and odd NLCSs, we have obtain the
following expectation values of some operators:

〈â〉± = 0, 〈â+〉± = 0, (19)

〈â+â〉+ = |b+1|2
∞∑

n=0

|β|2n2n

[(1 + k(2n − 2))!!]2(2n)!
, (20)
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〈â+â〉− = |b−1|2
∞∑

n=0

|β|2n(2n + 1)

[(1 + k(2n − 1))!!]2(2n + 1)!
, (21)

〈â2〉+ = β|b+1|2
∞∑

n=0

|β|2n

[1 + k(2n − 2)]!![1 + 2kn]!!(2n)!
, (22)

〈â2〉− = β|b−1|2
∞∑

n=0

|β|2n

[1 + k(2n − 1)]!![1 + k(2n + 1)]!!(2n + 1)!
. (23)

The expectation value of 〈â+2〉± are the complex conjugate of 〈â2〉±.
Substituting Eqs. (19)—(23) into Eqs. (18), with the aid of a numerical

method, the variations of functions D(1) and D(2) versus |β| (when arg β = 0
and k = 0.75) are shown in detail in Fig. 1.

From Fig. 1, it is evident that, in some ranges of |β|, the quadratue squeezing
only consist in the even NLCS (in the direction X2). For a fixed value (k = 0.75) of
the parameter k, the ranges are 2.3105 < |β|. The result shows that the quadratue
squeezing properties of the new even NLCS are different from those of the usual
ECS (Xia and Guo, 1989).

4. ANTIBUNCHING EFFECT OF EVEN AND ODD NLCSs

Now we study the antibunching effect of the even and odd NLCSs given by
Eqs. (11)–(14). If the second-order correlation function of a light field (Walls, 1983)

Fig. 1. Variation of the functions D(1) and D(2) with |β| for
k = 0.75. Solid curves (the even NLCS) and broken curves
(the odd NLCS).
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is less than 1, i.e., g(2)(0) < 1, one says that the light field exhibits an antibunching
effect. In a similar way, we introduce the second-order correlation for the even and
odd NLCSs,

g(2)
± (0) = ±〈β, F |â+2â2|β, F〉±

±〈β, F |â+â|β, F〉2±
. (24)

If g(2)
+ (0) < 1 (or g(2)

− (0) < 1), we say that the new even (or odd) NLCS given by
Eq. (11) [or Eq. (13)] exhibits the antibunching effect.

From Eqs. (11) and (13), we obtain

〈â+2â2〉+ = |b+1|2
∞∑

n=0

|β|2n(2n)(2n − 1)

[(1 + k(2n − 2))!!]2(2n)!
, (25)

〈â+2â2〉− = |b−1|2
∞∑

n=0

|β|2n(2n + 1)(2n)

[(1 + k(2n − 1))!!]2(2n + 1)!
. (26)

Substituting Eqs. (20), (21), (25) and (26) into Eq. (24), with the aid of a numerical
method, the variations of functions g(2)

± (0) versus |β| (when arg β = 0 and k =
0.75) are shown in detail in Fig. 2.

From Fig. 2, we can see that, the odd NLCS always exhibits the antibunching
effect for arbitrary value of |β|, while the even NLCS may exhibits the antibunching
effect in some wide ranges of |β| for a fixed value of k. For example, for k = 0.75,
except the ranges |β| < 2.5625, the even NLCS exhibits the antibunching effect.

Fig. 2. Variation of the function g(2)
± (0) with |β| for k = 0.75.

Solid curve (the even NLCS) and broken curve (the odd
NLCS).
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This means that the sub-Poissonian distributions (i.e., the antibunching effect) of
the even NLCS are very different from those of the usual ECS (Xia and Guo,
1989).

5. PHASE PROBABILITY DISTRIBUTION OF EVEN AND ODD NLCSs

It is well known that the phase probability distribution is an essential tool
in the study of various phase characteristics. In this section, we now turn to the
phase probability distributions for the even and odd NLCSs given by Eqs. (11)
and (13). According to the Pegg–Barnett phase operator formalism (Barnett and
Pegg, 1989; Pegg and Barnett, 1988, 1989) we start with a finite dimensional
(s + 1) Hilbert space spanned by the number states |0〉, |1〉, . . . , |s〉. In this space
a complete orthonormal set of phase states |θm〉, m = 0, 1, 2, . . . , s, is defined by

|θm〉 = 1√
s + 1

s∑
n=0

einθm |n〉, (27)

where θm are given by

θm = θ0 + 2mπ

s + 1
, m = 0, 1, 2, . . . , s. (28)

The value of θ0 is arbitrary and defines a particular basis in the phase space. In this
space a hermitian phase operator 	θ is defined as

	θ =
s∑

m=0

θm |θm〉〈θm |. (29)

For superposition states of the form |ψ〉 =
∞∑

n=0
Cneinϕ|n〉 the phase probability

distribution is given by

|〈θm |ψ〉|2 = 1

s + 1
+ 2

s + 1

∑
n>n′

CnCn′ cos[(n − n′)(ϕ − θm)]. (30)

Choosing θ0 as θ0 = ϕ − sπ
s+1 , we obtain from Eq. (29)

|〈θm |ψ〉|2 = 1

s + 1
+ 2

s + 1

∑
n>n′

CnCn′ cos

[
(n − n′)

2µπ

s + 1

]
, (31)

where µ = m − s/2. The continuous phase probability distribution P(θ ) can now
be obtained as

P(θ ) = lim
s→∞

s + 1

2π
|〈θm |ψ〉|2 = 1

2π

(
1 + 2

∑
n>n′

CnCn′ cos[(n − n′)θ ]

)
,

× (−π ≤ θ ≤ π ). (32)
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For the even and odd NLCSs given by Eqs. (11) and (13), the continuous
phase probability distribution P±(θ ) is given by

P±(θ ) = 1

2π

(
1 + 2

∑
n>n′

(C±)n(C±)n′ cos[(n − n′)θ ]

)
,

(−π ≤ θ ≤ π ), (33)

where

(C±)n = N±N f
[rn ± (−r )n]F(n)!√

n!
,

N± =
{

2 ± 2N 2
f

∞∑
n=0

(−|β|2)n[F(n)!]2

n!

}−1/2

, (34)

where β = r exp(iϕ). The results of numerical computations of the continuous
phase probability distribution for the even and odd NLCSs are presented in
Fig. 3 and 4.

In the Fig. 3 and 4, for the even and odd NLCSs, we plot the phase probability
distribution keeping k fixed at 0.75 and varying |β| (|β| = 0.4, 0.6, and 0.8). From
the figures we find that the phase probability distribution of the even and odd
NLCSs remain essentially the same for different values of |β| when k is kept fixed.
The distributions all have only a central peak at θ = 0. However, it may be noted
that as |β| increases the peak structure becomes more and more prominent. On
the other hand, from the figures it is seen that, for the fixed value of |β|, the peak
structure of the phase probability distribution of the odd NLCS has become more

Fig. 3. Phase distribution of the even NLCS for k = 0.75 and
|β| = 0.4 (curve a), 0.6 (curve b), and 0.8 (curve c).
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Fig. 4. Phase distribution of the odd NLCS for k = 0.75 and
|β| = 0.4 (curve a), 0.6 (curve b), and 0.8 (curve c).

prominent than those of the even NLCS. Therefore, unlike the case of ordinary even
and odd CSs the Pegg–Barnett distribution clearly reflects the different character
of quantum interference in the case of the new even and odd NLCSs.

6. CONCLUSIONS

In this paper, we introduced a class of even and odd NLCSs. The some of
their properties, including quadrature squeezing, antibunching effect, and phase
probability distribution, are investigated. This class of even and odd NLCSs has
rather different statistical properties from those of the usual even and odd CSs. It
is found that, for a fixed value (k = 0.75) of the parameter k, the squeezing only
consists in the even NLCS, and the antibunching effect appear for both even and
odd NLCSs in some ranges of |β|. The phase probability distribution of the even
and odd NLCSs remain essentially the same for different values of |β| when k
is kept fixed. However, for the fixed value of |β|, the peak structure of the phase
probability distribution of the odd NLCS has become more prominent than those of
the even NLCS. Therefore, unlike the case of ordinary even and odd CSs the Pegg–
Barnett distribution clearly reflects the different character of quantum interference
in the case of the even and odd NLCSs.
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